

Drew Lindow Jim Mitchell Nathan Wardwell

1

03/17/2023

GNSS-R History

- 1988: Georgiadou and Kleusberg "On carrier signal multipath effects in relative GPS positioning"
- "extreme multipath interference can render useless GPS observations for precise positioning applications"

GNSS-R Interference patterns from a planar surface below an antenna had a **distinct frequency** related to the height of the antenna above the surface.

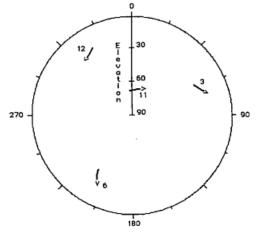
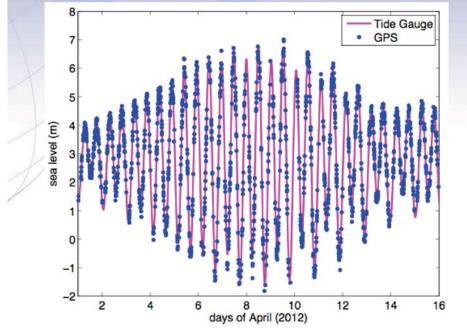


Figure 2: Satellite polar plot, Dec. 14, 1986, 13:30-13:40 UT

GNSS-R History

 2013: Larson et al. First demonstration of water levels GPS-IR SNR measurements

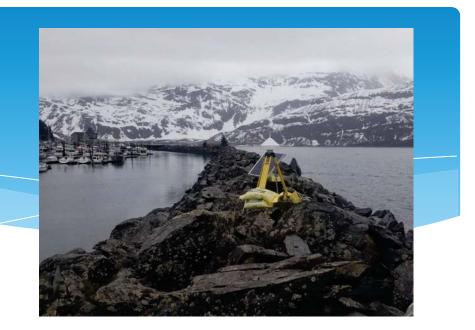

Onsala, Sweden

Petersen Bay, AK

Comparison between GPS and Seldovia NWLON Record

GNSS-R History

 2017: Larson et al. 10-year comparison at Friday Harbor, Washington, between a GPS-IR analysis and collocated tide gauge (350 m SE) <u>showed daily</u> <u>averages</u> to be in agreement at the 2-cm level



SC02 (Friday Harbor) GPS

GNSS-R at JOA

- * AT01 & PBAY GNSS-R @ JOASurveys.com
- 2020 Whittier Deployed Pressure Gauge, GNSS Buoy, GNSS-R
- * 2021 Wainwright Egegik

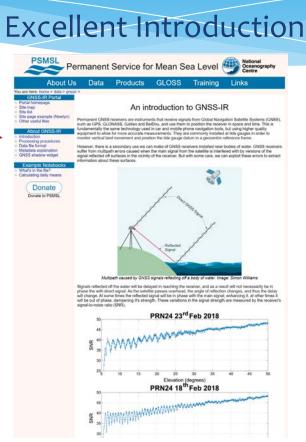
Permanent Service for Mean Sea Level https://psmsl.org

275 Sites around the world

GNSS-IR Site Map

- Good site reflectometry works well and data is available
- Decommissioned reflectometry works well, data is available, but site is no longer operating
- Questionable reflectometry works sometimes or the signal is very weak probably due to location
- Bad no data available at the site, either due to positioning of the sensor, lack of signal to noise ratio data, or data sampling is inadequate for the height of the sensor

GNSS-IR Portal Portal homepage

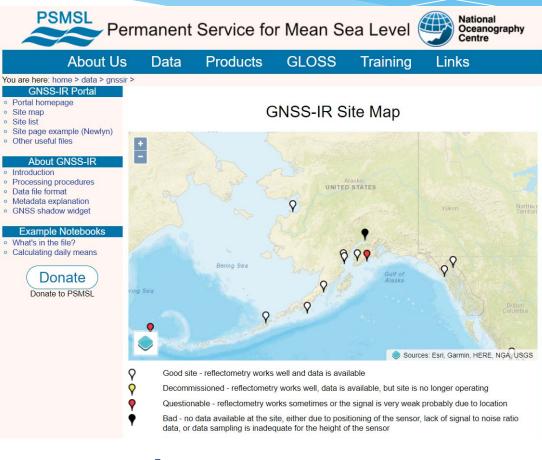

- · Site map Site list
- Site page example (Newlyn)
- Other useful files

About GNSS-IR

- Introduction
- Processing procedures
- Data file format
- Metadata explanation
- GNSS shadow widget

Example Notebooks

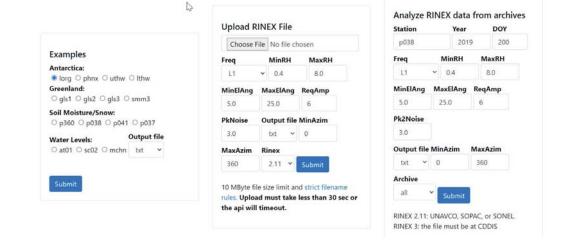
- What's in the file?
- Calculating daily means



https://psmsl.org

* 10 sites in Alaska

CODE	Site	GNSS Data
ELDC	Eldred Rock	1/5/2022
AB43	Cape Spencer	current
AC43	Seal Rocks	9/10/2021
PBAY*	Peterson Bay	current
AC59	Ursus Head	current
AV02	Augustine Volcano	1/16/2023
UGAI	Ugaiushak Island	6/21/2022
AC12	Chernabura	1/21/2023
AV09	Unalaska	current
AT01	St. Michael	current
* GPS Only	/	


https://gnss-reflections.org/

GNSS-IR Reflections ??? Geoid ReflZones People API RINEX3 Pubs

The New GNSS-IR API

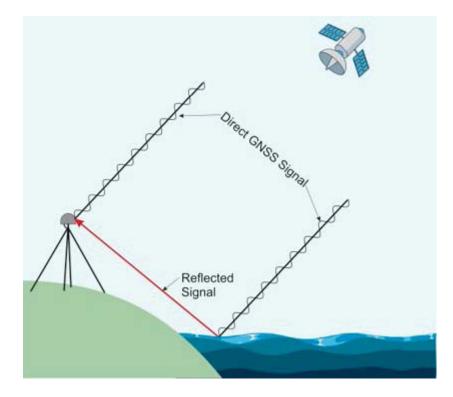
- Kristine Larson
 Git Hub –
 https://github.com/kristinemlarson
- * YouTube Videos Webinars ...
- * Short Course May 2- May 5, 2023

https://gnss-reflections.org/

😽 Kristine M. Larson

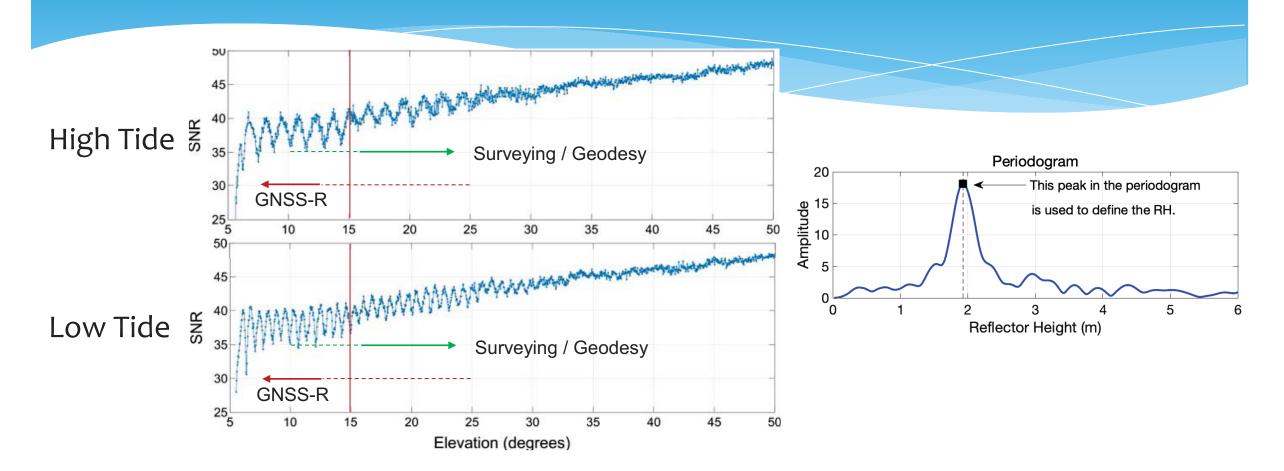
Posted November 8, 2015

Category GPS Reflections Home Background Learning Research Publications Conta


Measuring Water Levels with GPS

GNSS signals reflect off water surfaces. Unlike for soil moisture and snow depth, which varies most dynamically only on the day that it rains or snows, water levels vary throughout the day. This adds a bit of complexity for using the GPS/GNSS Interferometric Reflectometry (GPS-IR or GNSS-IR) technique to measure tidal variations for example. The advantage of using GNSS-IR with a standard geodetic receiver is that you can simultaneously measure the three-dimensional position of the GNSS antenna in the International Terrestrial Reference Frame.

Reflected Signal Interference



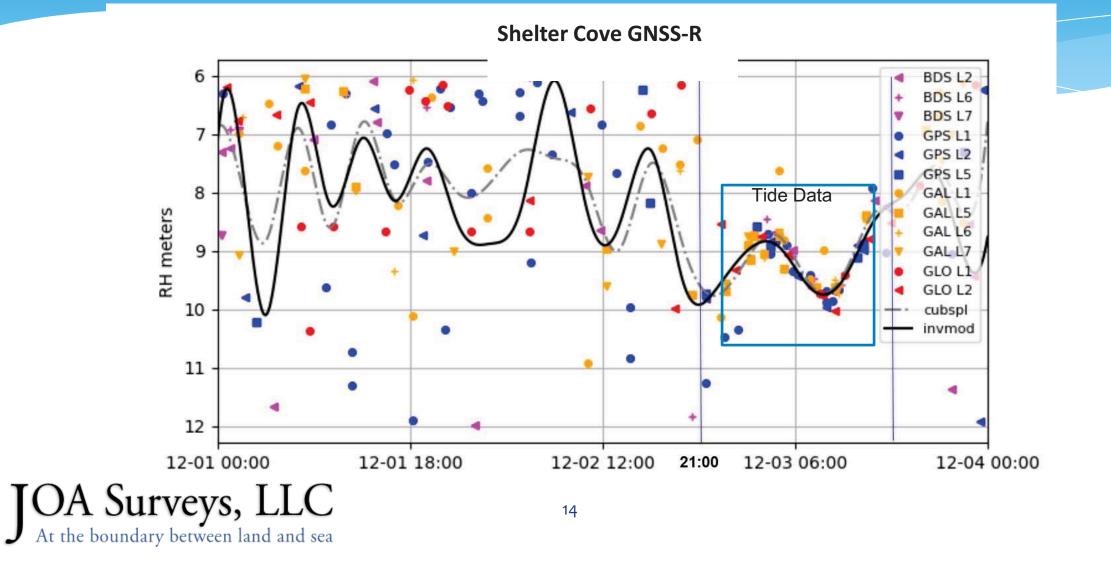
Wave X Wave Y Hesultant wave Z Constructive interference Hesultant Constructive interference Hesultant Constructive interference

Wave Interference

JOA Surveys, LLC At the boundary between land and sea

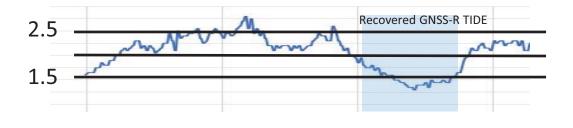
SNR Oscillation Frequency

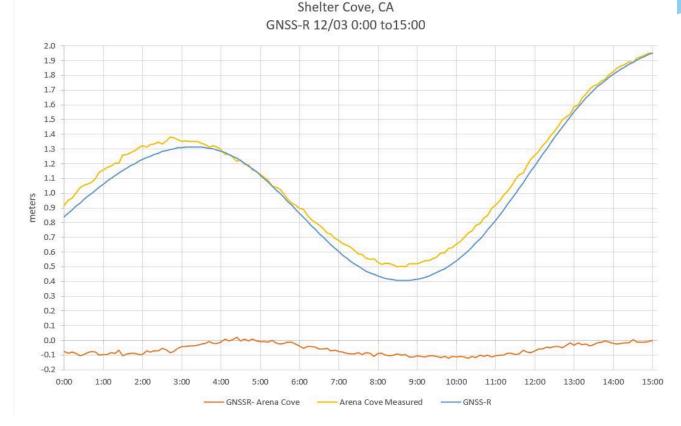
My Start with GNSS-R Shelter Cove, CA RECON December 1-4, 2022



Shelter Cove, CA

BACK336a00.22gz	3,841,784	GZip File	12/1/2022 3:15:39 PM
💾 BACK336a15.22gz	4,147,418	GZip File	12/1/2022 3:30:25 PM
BACK336a30.22gz	4,239,622	GZip File	12/1/2022 3:45:49 PM
BACK336a45.22gz	4,424,211	GZip File	12/1/2022 4:00:32 PM
BACK336b00.22gz	4,260,002	GZip File	12/1/2022 4:16:36 PM
BACK336b15.22gz	4,124,577	GZip File	12/1/2022 4:30:24 PM
BACK336b30.22gz	3,918,243	GZip File	12/1/2022 4:46:06 PM
BACK336b45.22gz	3,834,197	GZip File	12/1/2022 5:01:29 PM
BACK336c00.22gz	3,789,097	GZip File	12/1/2022 5:15:47 PM
BACK336c15.22gz	3,864,674	GZip File	12/1/2022 5:30:28 PM
BACK336c30.22gz	3,837,553	GZip File	12/1/2022 5:45:38 PM
BACK336c45.22gz	4,106,515	GZip File	12/1/2022 6:00:34 PM
BACK336d00.22gz	4,129,858	GZip File	12/1/2022 6:15:38 PM
BACK336d15.22gz	3,887,867	GZip File	12/1/2022 6:30:16 PM
BACK336d30.22gz	3,433,531	GZip File	12/1/2022 6:45:50 PM
BACK336d45.22gz	3,594,523	GZip File	12/1/2022 7:00:25 PM
BACK336e00.22gz	3,436,760	GZip File	12/1/2022 7:15:22 PM




Shelter Cove GNSS-R Data

Shelter Cove GNSS-R Comparison with Arena Cove NWLON

Wave Height at Buoy 46014 near Shelter Cove

https://gnss-reflections.org/

褖 Kristine M. Larson

Posted November 8, 2015

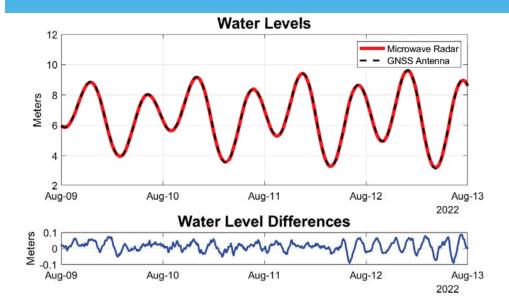
Category GPS Reflections Home Background Learning Research Publications Conta

Measuring Water Levels with GPS

If the surface isn't too rough, GNSS signals reflect off water surfaces. Unlike for soil moisture and snow depth, which varies most dynamically only on the day that it rains or snows, water levels vary throughout the day. This adds a bit of complexity for using the GPS/GNSS Interferometric Reflectometry (GPS-IR or GNSS-IR) technique to measure tidal variations for example. The advantage of using GNSS-IR with a standard geodetic receiver is that you can simultaneously measure the three-dimensional position of the GNSS antenna in the International Terrestrial Reference Frame.

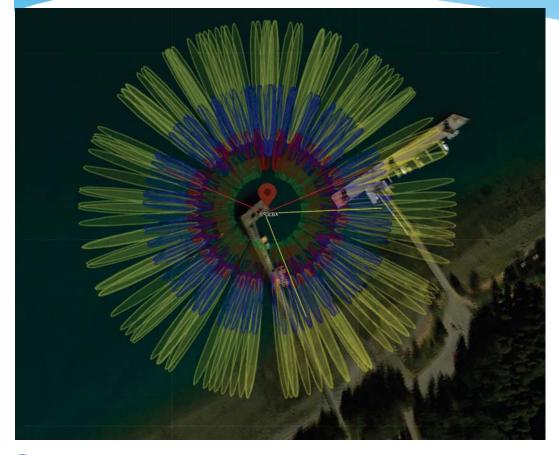
GNSS-R Where Does it Work?

Bartlett Cove, Alaska – Protected Waters



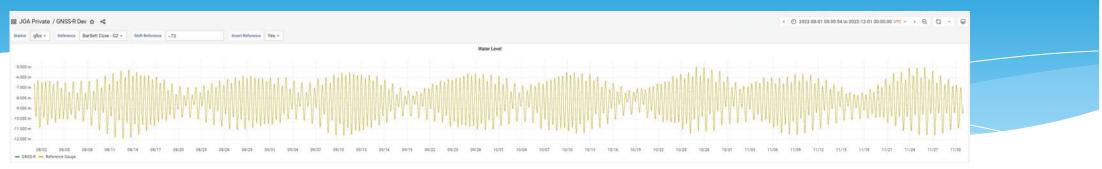
P183 Pacific Coast at Bodega Bay, California Open Ocean

Bartlett Cove - GLBX


The GNSS antenna is next to a radar sensor. Both are in a protected area.

Processed using: github.com/kristinemlarson

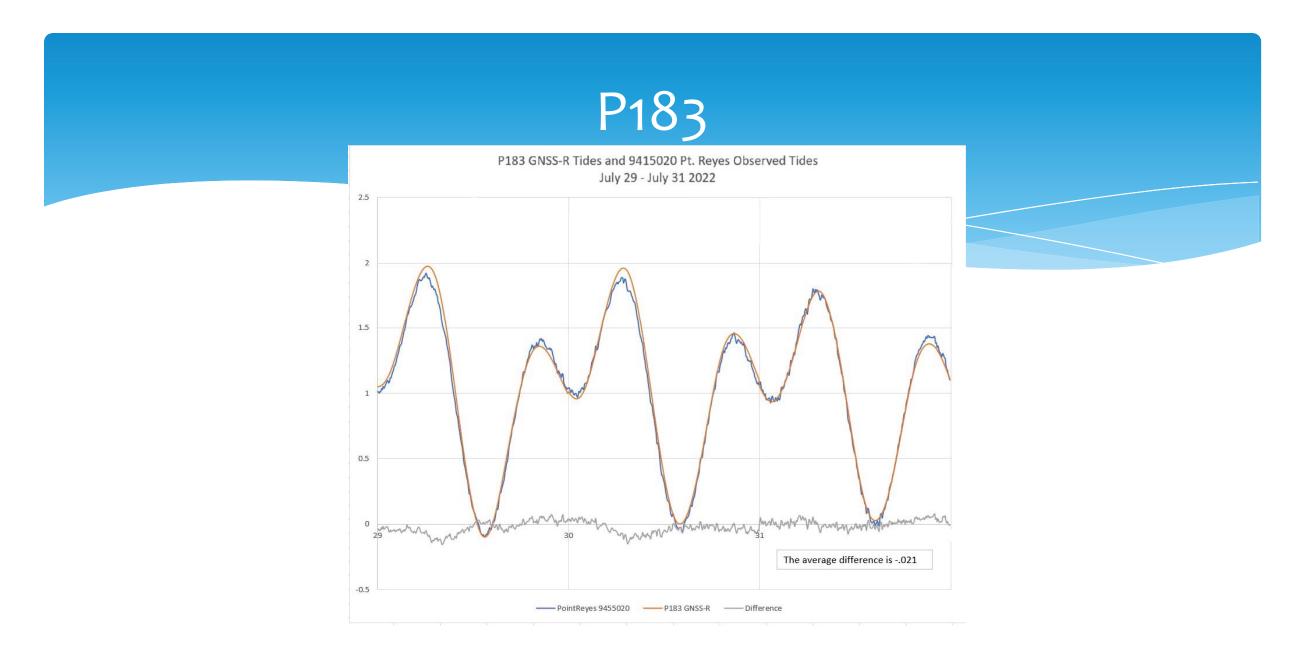
Bartlett Cove - GLBX



Current Processing Parameters Azimuth 293 to 068 (red line) Elev. Angle 5 (yellow) ,7 (blue), 10 (red) , 12 (green) Reflector Height 3-17 meters

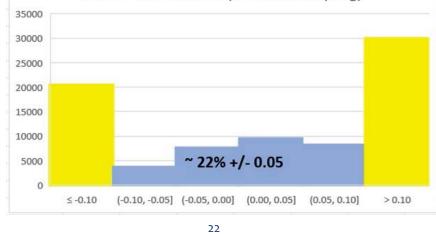
To Do 1) AZ 88 – 158 Elev. Angle 8 -12 (5 - 7 go dry) 2) AZ 180 - 293 Elev. Angle 5 -9 (9 – 12 hit dock)

Bartlett Cove - GLBX

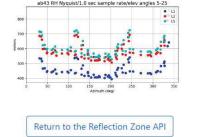


GLBX 08/01 -> 11/30 2022 GNSS-MWWL

Difference GNSS-R



P183 GNSS-R - Pt. Reyes, CA Observed Tide Jan. 1 - Nov. 30 2022 (6 minute sampling)

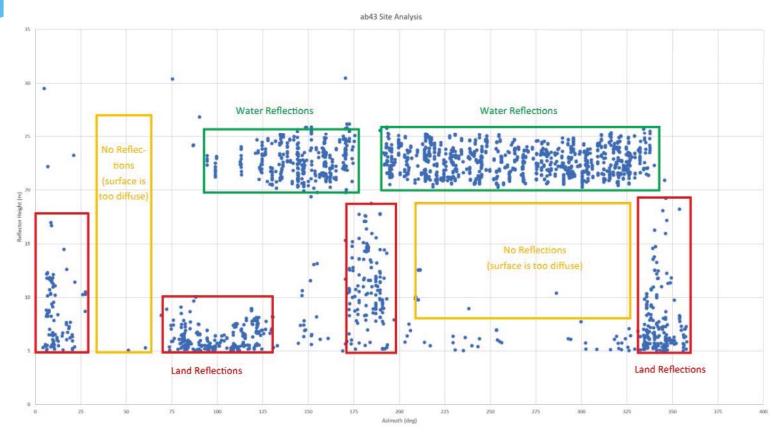

GNSS-IR Reflection Zone Mapping

Input coordinates: Lat. (deg) 0.0	Lon. (deg) 0.0	EllipseHt (m) 0.0	
Reflection Height (meters)			
◉ Use Mean Sea Level ○ Set Reflect	or Ht. Value 2		
Frequency			
€ L1 O L2 O L5			
Compute Nyquist (this takes	a few seconds)		
○ no ● yes 1 rcvr sample ra	te (sec)		
Elevation Angles (degrees)			
○ 5,10,15	12 0 5,6,7 0 10,15,20 0	5,7,10	
Azimuth Angles (degrees)			
Start (deg) 0 End (deg) 360			
Constellation			
GPS O Galileo O Glonass O Beid	Iou(MEO)		
Gro Gameo o Gionass o Deic	iou(inico)		

GNSS-IR Reflection Zone Mapping

Station: ab43 Latitude: 58.19884215 Longitude: -136.6408077 Ellipsoidal Height(m): 26.925 Reflection Ht. (m) : 22.605 Elevation Angles (deg) : 5,10,15,20,25 Azimuth Angles (deg) : 0 to 360 Constellation : GPS Frequency: L1

JOA Surveys, LLC At the boundary between land and sea


ab43

CORS station AB43 is located on a island near the Gulf of Alaska. The antenna is ~23m above the water.



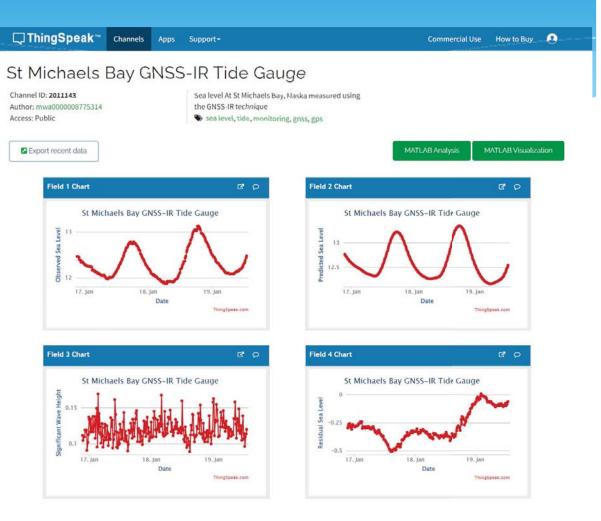
GNSS-R analysis of data from CORS AB43 using full 360 degree azimuth span.

Azimuths for isolating water returns as outlined in green.

Setting for this station: reflector height min = 19 m reflector height max = 27 m azimuth min = 85° aximuth max = 340°

Processing parameters for AB43

AB43 Processing


Ideal Receiver Setup

- * GPS GLONASS Galileo BeiDou (LEO)
- * 1 Hz
- * SNR (Hires)
- * o degree mask
- * Raw Binary or RINEX 3

Near Real Time: AT01

* ATo1 Near Real Time (15 minute)
 Simon Williams
 https://thingspeak.com/channels/2011143



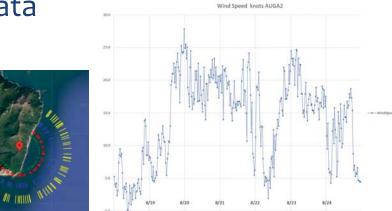
STP1 Prudhoe Bay

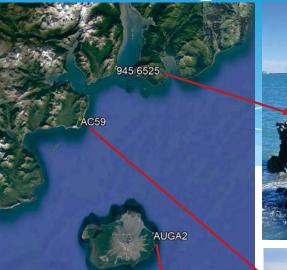
Early season ice growth

* STP1 - Data provided by Hilcorp, with thanks to Karl Kyzer

STP1

Sea Ice (NOAA)


Accidental VDATUM Tide Gauge AC59


Events:

6/01-9/01 945 6525 Iniskin Bay VDATUM Gauge 6/19 Receiver Swap 8/20 – 8/22 High Winds

AC59 UNAVCO PBO GNSS Data ~ 290 m. above Cook Inlet

7.5 sq. mi. refl. zone
500 m. inshore
1 Hz data rate required

- * <u>GLBX</u> Full GNSS Large Window 500 arcs/day
- * ATO1 946 8333 missing low tides

GLBX – Data provided by National Parks Service, with thanks to Joel Cusick STP1 - Data provided by Hilcorp, with thanks to Karl Kyzer ATO1 & AC59 – Data provided by UNAVCO

Going Forward

- * Algorithm Development (Strandberg) 1.0 ready latency 12 hours
 - * 2.0 Kalman Filter latency 15 min.
 - * Quality Control / Quality Assurance (or is it stormy)
- * Low Power setup with real-time communication
- * Automated near real-time processing with data access (AOOS?)
- * Address NWLON Gaps

Questions

